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Abstract

Detection and localization of image manipulations like

splices are gaining in importance with the easy accessi-

bility to image editing softwares. While detection gener-

ates a verdict for an image it provides no insight into the

manipulation. Localization helps explain a positive detec-

tion by identifying the pixels of the image which have been

tampered. We propose a deep learning based method for

splice localization without prior knowledge of a test image’s

camera-model. It comprises a novel approach for learning

rich filters and for suppressing image-edges. Additionally,

we train our model on a surrogate task of camera model

identification, which allows us to leverage large and widely

available, unmanipulated, camera-tagged image databases.

During inference, we assume that the spliced and host re-

gions come from different camera-models and we segment

these regions using a Gaussian-mixture model. Experiments

on three test databases demonstrate results on par with and

above the state-of-the-art and a good generalization ability

to unknown datasets.

1. Introduction

“A picture is worth a thousand words”. A statement,

which appeared in print in the early 1900s, has become a

ubiquitous part of our daily lives with the advance of cam-

era technology. Ironically, however, with media becoming

digitized, this implicit trust is under attack. With the ac-

cessibility of image editing softwares and wide diffusion of

digital images over the internet, anyone can easily create

and distribute convincing fake pictures. These fakes have a

significant impact on our lives: from the private, the social,

to the legal. It is imperative, therefore, to develop digital

forensic tools capable of detecting such fakes.

Typically, a fake well done hides its manipulations clev-

erly with the semantic contents of the image, therefore,

forensic algorithms inspect low-level statistics of images or

inconsistencies therein to identify manipulations. These in-

clude distinctive features stemming from the hardware and

software of a particular camera make (or a post-processing

step thereafter). For example, at the lowest hardware level,

the photo-response non-uniformity (PRNU) noise pattern is

a digital noise “fingerprint” of a particular device and can

be used for camera identification [8]. The colour filter array

(CFA) and its interpolation algorithms are also particular to

a device and can help discern between cameras [22]. At a

higher level, the image compression format, e.g. the popu-

lar JPEG format, can help determine single versus multiple

compressions [3] or different device makes [26, 23]. This

is useful in the detection of digital edits and localization of

splices [1].

Traditional image forensic algorithms have modelled

discrepancies in one or multiple such statistics to detect or

localize splicing manipulations. Prior knowledge charac-

terizing these discrepancies have been leveraged to design

handcrafted features. The survey in [27] compares the per-

formances of a number of such algorithms.

Learned forensic approaches have recently gained pop-

ularity with the growing success of machine learning and

deep learning. In [9], Cozzolino et al. recast hand designed

high pass filters, useful for extracting residual signatures, as

a constrained CNN to learn the filters and residuals from a

training dataset. Zhou et al. [28], proposed a dual branch

CNN, one learning from the image-semantics and the other

learning from the image-noise, to localize spliced regions.

Huh et al. [18] (henceforth referred to as EXIF-SC), lever-

aged the EXIF metadata to train a Siamese neural network

to verify metadata consistency among patches of a test im-

age to localize manipulated pixels. In [24], Rössler et al.

took on a new genre of forensic attacks – state-of-the-art

face manipulations including some created by deep neural

networks – and showed that learned CNNs outperformed

traditional methods. However, their success notwithstand-

ing, deep learning approaches have typically shown vulner-

ability to generalizing to new datasets [11, 2, 25].

In this paper, we propose a novel, blind forensic ap-

proach based on CNNs to localize spliced regions in an

image without any prior knowledge of the source cameras.

We employ a new way to learn high pass “rich” filters and

a novel probabilistic regularization based on mutual infor-

mation to suppress semantic contents in the training images
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Figure 1. SpliceRadar is able to learn low level features while suppressing semantic-information which are image specific. This allows it

to generalize well to new tampered datasets. Two examples: col-1: input image, col-2: sample of a learned rich filter (contains semantic-

edges), col-3: final features (semantic-edges suppressed), col-4: output heat map indicating tampered region.

and learn low-level features of camera models. Our network

is trained for a surrogate task of source-camera identifica-

tion, which allows us to use large, widely available camera-

tagged untampered images for training. Forgery localiza-

tion is done by computing the low-level features of the im-

age, which identifies the signatures of multiple source cam-

era models, and segmenting these regions using a Gaussian

mixture model. Preliminary results from a number of test

databases: DSO-1 [13], Nimble Challenge 2016 (NC16)

and Nimble Challenge 2017 (NC17-dev1) [14] show an im-

provement over the state-of-the-art. Furthermore, since our

training data is unrelated to the test datasets, it also demon-

strates good generalization ability.

In summary, the contributions in this paper are:

• a new way to learn high pass rich filters using con-

strained CNNs that compute residuals, highlighting

low-level information over the semantics of the image;

• a novel probabilistic regularization based on mutual in-

formation, which helps to suppress image-edges in the

training data;

• experimental analysis showing up to ∼ 4% (points)

improvement over the state-of-the-art on three stan-

dard test datasets: DSO-1, NC16 and NC17-dev1.

2. Related Work

Rich Filters: Spatial rich models for steganalysis [15], pro-

posed a large set of hand-engineered high pass filters, rich

filters (RFs), to extract local noise-like features from an im-

age. By computing dependencies among neighbouring pix-

els, these filters draw out residual information that high-

lights low-level statistics over the image-semantics. Rich

filters have proven extremely effective in image forensics

and have been widely adopted by various state-of-the-art

splice detection algorithms. SpliceBuster (SB) [10], a blind

splice detection algorithm, used one such fixed filter to sep-

arate camera features from the spliced and host regions.

In [28], three fixed rich filters were used in the noise-

branch to compute residuals along with a CNN to learn co-

occurrence probabilities of the residuals as features to train

a region proposal network to detect spliced regions. Ba-

yar and Stamm [4, 5], proposed a constrained convolution

layer to learn RF-like features and a CNN to learn the co-

occurrence probabilities from the data. At every iteration

they projected the weights of the constrained layer to sat-

isfy wk(0, 0) = −1 and
∑

m,n 6=0,0 wk(m,n) = 1, where

wk(i, j) is the weight of the kth filter at position (i, j). The

end-to-end trained network in [5] was used to identify broad

image-level manipulations like blurring and compression.

We also use learned RFs but propose a new constrained con-

volution layer and a different approach to applying the con-

straints.

Camera Identification: Camera identification plays an im-

portant part in image forensics. Lukas et al. proposed a

PRNU based camera identification algorithm in [19] where

they estimated nine reference noise patterns using wavelet

denoising and averaging, then matched the reference pat-

terns to new images by correlation to determine the source

camera. CNNs were trained to compute features along with

SVMs for source camera identification in [6]. Learned RFs

from constrained convolution layers were used for cam-

era identification in [4]. Recently, Mayer and Stamm [21],

trained a similar learned RF based CNN for a camera iden-

tification task, then used the output of the CNN as features

to train a second network for splice detection. In [7], Bondi

et al. proposed a strategy similar to ours in spirit: a CNN as

a feature extractor to identify camera-models, patch based

feature computation of a test image and clustering of the

patch-features to localize spliced regions. However, it is
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fundamentally different from our proposed method. Bondi

et al. used regular convolutions and max-pooling in their

CNN, which are typically used to learn high-level seman-

tic structures of an image, therefore biasing the CNN to

learn semantic contents of the training data. In this work,

we propose to suppress the semantic contents of an image

to learn the distinguishing low-level features of a camera-

model. Additionally, the experiments in [7] are conducted

on synthetic datasets with straightforward manipulations. In

comparison, we demonstrate our method on multiple estab-

lished test datasets with (series of) complex manipulations.

3. Proposed Method

We propose SpliceRadar (SR), a deep learning approach

for blind forgery localization. Our network has no prior

knowledge of the source cameras of either the host or the

spliced image regions. Instead, it is trained to compute low-

level features which can segregate camera-models. A tam-

pered region is localized by computing the features over the

entire image and then segmenting the feature-image using a

Gaussian mixture model.

We train our network to differentiate camera-models in-

stead of individual device instances. The learned features

contain signatures of the entire image formation pipeline of

a camera-model: from the hardware, the internal processing

algorithms, to the compression.

Although challenging, we choose a blind localization

strategy to improve the generalization ability of our net-

work. This is achieved by training the SpliceRadar net-

work on a surrogate task of source camera-model identi-

fication, which allows us to leverage large and widely avail-

able camera-tagged image databases. It also allows us to

avoid known manipulated datasets and risk the chance of

over-specializing towards these. Additionally, we train with

a large number of camera models. This helps not only to

generalize better but also to boost our network’s ability to

segregate camera models. This ability to differentiate (even

unknown) camera-models is of greater interest to us than

the ability to identify the models available during training.

Low-level features: A key contribution in our design of

SpliceRadar is its ability to learn low-level features inde-

pendent of the image-semantics. This is achieved in our

architecture by a two-step process: residual information ex-

traction and semantic-edge suppression. The first layer of

the network consists of a set of learned RFs comparable

to [4, 5]. These largely suppress the semantic contents of

an input patch from a colour-image by learning to com-

pute residuals. However, since RFs are high-pass filters

they also accentuate the semantic-edges present in the im-

age (see Fig. 1). Searching for patterns based on these will

likely lead to learning misleading image specific informa-

tion that is not truly independent of the semantics. This

will result in our network learning information specific to

Figure 2. System architecture of SpliceRadar.

the semantic contents of the training data, which would af-

fect its generalization ability. Therefore, after learning the

spatial distribution of these residuals, we further suppress

the remaining semantic-edges by applying a probabilistic

regularization. From these we learn a hundred-dimensional

feature vector characteristic of a camera-model and inde-

pendent of the image-semantics. These features are used to

drive a cross-entropy loss during training and for segmenta-

tion during forgery localization.

Learned RFs: The first layer of our network computes

residuals from learned filters that resemble RFs in [15]. We

propose a novel way to do this using constrained convo-

lutions that is different from [4, 5]. Developing along the

lines of the original hand engineered RFs [15], we define a

residual to be the difference between a predicted value for a

central pixel defined over its neighbourhood and the scaled

value of the pixel. Therefore, from Eq. 1 in [15], we propose

the constrained convolution to learn residuals as:

R
(k)
RF = wk(0, 0) +

∑

m,n 6=0,0

wk(m,n) = 0, (1)

for the kth filter, where the support of the residuals is a

N × N neighbourhood (N = 5). The summation ensures

that the predicted value and the pixel’s value have opposite

signs [15]. Following the spirit of the original work, we pro-

pose to use a large bank of learned RFs, k = 1..64, instead

of only 3 learned RFs like in [4, 5]. These constraints are

applied by including RRF = (
∑

k(R
(k)
RF )

2)
1

2 as a penalty

in the cost function. This allows our network to learn suit-

able residuals for camera-model classification.

System architecture: We propose an eighteen layer deep

CNN that takes as input a 72 × 72 × 3 RGB patch, and

the camera-model label during training, as shown in Fig. 2.

The first layer is a constrained convolution layer with kernel

size 5×5×3×64, producing 64 filters as described above.

Convolution block A comprises of a convolution without

padding with kernel size 3×3×X×19, batch-normalization

and ReLU activation. It is repeated five times, with X = 64
the first time and then 19. Convolution block B comprises

of two identical sub-blocks and a skip-connection around

the second sub-block. Each sub-block consists of a convo-

lution with padding with kernel size 3×3×19×19, batch-

normalization and ReLU activation. The skip-connection

adds the output of the first sub-block’s ReLU activation to
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the output of the second sub-block’s batch-normalization.

This is repeated twelve times. We found this architecture to

be more effective than a standard residual block [17], since

it achieved ∼ 10% better validation accuracy at the sur-

rogate task of camera-model identification during training.

The two convolution blocks together learn the spatial dis-

tribution of residual values and can be interpreted as learn-

ing their co-occurrences. The final “bottleneck” convolu-

tion has kernel size 3 × 3 × 19 × 1. Its output is a pre-

feature image of size 56× 56. All convolutions have stride

1. Following these are three fully-connected layers: FC1

with 75 neurons, FC2, the feature-layer, with 100 neurons,

and FC3, the final layer that outputs logits, with a number of

neurons, C, corresponding to the number of training cam-

era models. FC1 is followed by a dropout layer with keep-

probability of 0.8 and ReLU non-linearity. The network is

trained using cross-entropy loss over the training data:

LCE = −
1

M

M∑

i=1

yi log(ŷi), (2)

where yi is the camera-model label for the ith training data

point in the mini-batch of length M and ŷi is the softmax

value computed from the output of FC3.

Mutual Information based regularization: Mutual infor-

mation (MI) is a popular metric for registering medical im-

ages since it captures linear and non-linear dependencies

between two random variables and can effectively compare

images of the same body part across different modalities

with different contrasts (e.g. MRI, CT, PET) [20]. We take

advantage of this property of MI to compute the dependency

of the input patch, Pi, with the pre-feature image, pi, which

is the output of the final convolution layer, although they

may have different dynamic contrast ranges. Given that pi

is a transformed version of the residuals computed by the

first layer, the dependency primarily reflects the presence of

semantic-edges in pi. Therefore, we consider:

RMI =
1

M

M∑

i=1

MI(ρ(Pi),pi), (3)

as a regularization, where ρ(·) allows to approximate MI

numerically and is described below.

The complete loss function for training our network

combines these various components and also includes l2
regularization of all weights, W, of the network:

L = LCE + λRRF + γRMI + ω||W||2, (4)

where λ, γ and ω balance the amount of RF constraint

penalty and MI & l2 regularizations to apply along with the

main loss.

Splice localization: We assume that that genuine part of

the image comes from a single camera-model and has the

Dataset #Img. Format

DSO-1 [13] 100 PNG

NC16 [14] 564 JPEG (mostly)

NC17-dev1 [14] 1191 JPEG (mostly)
Table 1. Details of test datasets we consider.

largest number of pixels, while the spliced region(s) is

smaller in comparison. Therefore, we simplify the local-

ization task to a two-class segmentation problem, where the

distributions of both the classes are approximated by Gaus-

sian distributions and the smaller class represents the depar-

ture from the feature-statistics of the larger genuine class.

First, we subdivide the test image into 72 × 72 × 3
sized patches and compute the feature vector, FC2, for

each patch. The amount of overlap between neighbouring

patches is a hyper-parameter we discuss later. Then, we run

an expectation-maximization (EM) algorithm to fit a two-

component Gaussian mixture model to the feature-vectors,

to segregate the patches into two classes. We rerun this fit-

ting one hundred times with random initializations and se-

lect the solution with the highest likelihood. This proba-

bility map is first “cleaned” of spurious noise using mor-

phological opening (or closing) operation using a fixed disk

of size two. Then it is upsampled to the original image’s

dimensions and used for localizing the tampered region(s).

3.1. Implementation Details

Training: We trained our network using the Dresden Image

Database (B) [16], which comprises of C = 27 camera-

models and almost 17,000 JPEG images. We did not seg-

regate the images by their compression quality-factors as

we considered these to be part of the camera models signa-

ture. For each camera-model we randomly selected 0.2%
and 0.1% of the images as validation and test sets, while

the remaining files were used for training. The training

comprised of a mini-batch size of M = 50 patches and

100,000 patches per epoch chosen randomly every epoch.

The network was trained for 130 epochs, using Adam opti-

mizer with a constant learning rate of 1e− 4 for 80 epochs

and then decaying exponentially by a factor of 0.9 over the

remaining epochs. This took approximately two days on

an NVIDIA GTX 1080Ti GPU for our TensorFlow based

implementation. We obtained optimal results of ∼ 72%
camera-model identification accuracy on the validation and

test sets for weights (Eq. 4): λ = γ = 1 and ω = 5e − 4,

which were found empirically.

MI: We computed the MI in Eq. 3 numerically by approxi-

mating p(ρ(Pi)), p(pi) and p(ρ(Pi),pi) the marginal and

joint distributions of Pi and pi, using histograms (50 bins).

To do this, we defined ρ(·) as a transform that first converts

Pi (72× 72× 3) to its gray-scalar version then resizes it to

the dimensions of pi (56×56). ρ(·) conserves the semantic-

edges in Pi and aligns them to the edges in pi. Histogram
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Step F1 MCC ROC

(pixels) AUC

24 0.59 0.53 0.85

36 0.65 0.61 0.89

48 0.69 0.65 0.91

60 0.68 0.64 0.91

72 0.67 0.64 0.90
Table 2. Overlap hyper-parameter search on DSO-1. Best results

are achieved for a step of 48 pixels.

based MI computation is a common approximation that is

widely used in medical imaging [20]. However, it is also

computationally inefficient, which explains the long train-

ing time.

4. Results

We now demonstrate our proposed method for blind

splice detection. To evaluate its performance quantitatively,

we conduct experiments on three datasets, use three pixel-

level scoring metrics, and compare against two top per-

forming splice detection algorithms. Additionally, we also

present the results of a hyper-parameter search to decide on

the optimal overlap of patches during inference (splice lo-

calization).

The datasets we select are DSO-1, NC16 and NC17-

dev1 (Table 1). These recent datasets contain realistic ma-

nipulations that are challenging to detect. DSO-1 contains

splicing manipulations, where human figures, in whole or

in parts, have been inserted into images of other people.

NC16 and NC17-dev1 are more complex and challenging

datasets. Images from these may contain a series of manip-

ulations that may span the entire image or a relatively small

region. Furthermore, some of these manipulations may be

post-processing operations that are meant to make forgery

detection more difficult. All three datasets provide binary

ground-truth manipulation masks.

To evaluate the performance quantitatively we consider:

F1 score, Matthews Correlation Coefficient (MCC) and

area under the receiver operating characteristic curve (ROC-

AUC). These metrics have been adopted widely by the digi-

tal image forensics community [27, 12]. Since our proposed

method generates a probability map, F1 and MCC require a

threshold to compute a pixel-level binary mask. Again, as

per common practice, we report the values of these scores

for the optimal threshold, which is computed with reference

to the ground-truth manipulation mask [28, 25, 12].

We compare our approach with two state-of-the-art al-

gorithms: SB and EXIF-SC. SB [10], as discussed above,

uses the co-occurrences of a residual computed from a sin-

gle hand-engineered RF and EM algorithm for splice lo-

calization. It is also a blind approach which has proven

its merit as a top performer in the 2017 Nimble Challenge.

Step F1 MCC ROC

(pixels) AUC

24 0.18 0.12 0.64

36 0.19 0.13 0.65

48 0.45 0.41 0.81

60 0.4 0.36 0.78

72 0.22 0.17 0.67
Table 3. Overlap hyper-parameter search on 100 randomly se-

lected test images from NC16. Best results are achieved for a step

of 48 pixels.

Step F1 MCC ROC

(pixels) AUC

24 0.33 0.17 0.70

36 0.34 0.19 0.71

48 0.38 0.22 0.73

60 0.36 0.22 0.73

72 0.36 0.23 0.74
Table 4. Overlap hyper-parameter search on 100 randomly se-

lected test images from NC17-dev1. Results achieved for a step

of 48 pixels are comparable to the best results.

EXIF-SC [18], is a recent publication that has demonstrated

promising potential by applying a deep neural network to

detect splices by predicting meta-data inconsistency. For

each of these methods we report the scores that we com-

puted in our experiments, using the original codes/models

of the authors,1 along with the scores reported by the au-

thors.

First, we present the results of the hyper-parameter

search to decide the optimal overlap of patches during in-

ference. The overlap is computed in terms of pixels we step

along an axis to move from one patch to the next. We com-

pute the performance of our model for steps ranging from

24 to 72 pixels on the hundred images of DSO-1 and hun-

dred random images of NC16 and NC17-dev1 each. The

results are presented in Tables 2,3,4. From these we see

that a step of 48 pixels produces favourable results consis-

tently. Therefore, we consider 48 pixels as the optimal step

size in all our experiments.

Next, we present the results of forgery detection. Table 5

presents the F1 scores achieved by all three algorithms over

the three test datasets. SpliceRadar is able to improve over

the performances of SB and EXIF-SC on DSO-1 and NC16,

while its performance is on par with them on NC17-dev1.

Table 6 presents the MCC results in a similar format. Again,

SpliceRadar outperforms SB and EXIF-SC on DSO-1 and

NC16 and ties with SB as a top performer on NC17-dev1.

The ROC-AUC results are presented in Table 7. In this case,

SpliceRadar has the best scores on all three datasets, in-

1http://www.grip.unina.it/research/

83-image-forensics/100-splicebuster.html,

https://minyoungg.github.io/selfconsistency/
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Figure 3. Qualitative results from SpliceRadar. Col-1: input image, col-2: ground-truth manipulation mask, col-3: predicted probability

heat map, col-4: predicted binary mask. Rows-1,2: DSO-1, row-3: NC16, row-4: NC17-dev1.

DSO-1 NC16 NC17-dev1

EXIF-SC 0.57 (0.52) 0.38 0.41

SB 0.66 (0.66) 0.37 (0.36) 0.43

SR 0.69 0.40 0.42
Table 5. Results: F1 score comparison on the test datasets. Black:

scores we computed, blue: scores reported by the authors. (For

SB, we cite results from [12]).

dicating a better global performance across all thresholds.

Overall, from these three tables, we observe that our pro-

posed method’s performance is not only comparable to the

state-of-the-art, but up to 4% points better.

We present qualitative results in Figs. 3,4, where we se-

lect examples from all three datasets DSO-1, NC16 and

NC17-dev1. Fig. 3 shows the input colour image in the first

column, the ground-truth manipulation mask in the second

column, the probability heat map predicted by SpliceRadar

in the third column and the predicted binarized manipula-

tion mask in the final column. In Fig. 4, we qualitatively

compare the predicted binarized masks of all three algo-

rithms compared in Tables 5,6,7 alongside the input image

and the ground-truth manipulation mask. These figures pro-

vide a visual insight into our method’s performance.

DSO-1 NC16 NC17-dev1

EXIF-SC 0.52 (0.42) 0.36 0.18

SB 0.61 (0.61) 0.34 (0.34) 0.2

SR 0.65 0.38 0.2
Table 6. Results: MCC score comparison on the test datasets.

Black: scores we computed, blue: scores reported by the authors.

(For SB, we cite results from [12]).

DSO-1 NC16 NC17-dev1

EXIF-SC 0.85 0.80 0.71

SB 0.86 0.77 0.69

SR 0.91 0.81 0.73
Table 7. Results: ROC-AUC score comparison on the test datasets.

Finally, in Fig. 5 we present some hard examples, where

all three algorithms fail to detect the spliced regions. These

examples require further investigation and indicate future

research directions.

5. Conclusion and Future Directions

We proposed a novel method for blind forgery localiza-

tion using a deep convolutional neural network that learns
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Figure 4. Qualitative comparison of SpliceRadar, SB and EXIF-SC. Col-1: input image, col-2: ground-truth manipulation mask, col-3:

mask from SB, col-4: mask from EXIF-SC, col-5: mask from SpliceRadar. Rows-1,2: NC16, rows-3,4: NC17-dev1.

Figure 5. Hard examples where all three algorithms, SpliceRadar, SB and EXIF-SC, fail to detect the spliced regions. Col-1: input image,

col-2: ground-truth manipulation mask, col-3: heat map from SB, col-4: heat map from EXIF-SC, col-5: heat map from SpliceRadar.

low-level features capable of segregating camera-models.

These low-level features, independent of the semantic con-

tents of the training images, were learned in two stages:

first, using our new constrained convolution approach to

learn relevant residuals and second, using our novel proba-

bilistic MI-based regularization to suppress semantic-edges.

Preliminary results on three test datasets demonstrated the

potential of our approach, indicating up to 4% points im-

provement over the state-of-the-art.

In this first study, we compared our approach with two

top performing state-of-the-art methods on three datasets.

We plan more extensive tests in the future with more recent

datasets like those from Media Forensics Challenge 2018

and more algorithms. We plan to also systematically inves-

tigate the effects of JPEG compression.

One shortcoming of our approach is the histogram based

implementation of mutual information, which is compu-

tationally cumbersome. This compelled us to curtail our

model in a number of ways: to use a relatively small mini-

batch size, to train for a limited number of epochs and to

consider a relatively small network. We plan to improve this

bottleneck in the future to enable us to train larger models

on bigger datasets more efficiently. We also identified hard

examples where all the algorithms we tested failed to iden-

tify the correct spliced regions. These require further inves-

tigation. Finally, we foresee including more prior knowl-
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edge to improve results, for example fine-tuning our model

on the training data provided with each dataset.
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[6] L. Bondi, L. Baroffio, D. Güera, P. Bestagini, E. J. Delp, and

S. Tubaro. First steps toward camera model identification

with convolutional neural networks. IEEE Signal Processing

Letters, 24(3):259–263, 03 2017.
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